Arp 220 The Star Factory !!

The Star Factory

The galaxy Arp 220 is home to several giant star clusters—about 10 million solar masses—that are twice as massive as any comparable star cluster in the Milky Way Galaxy. McMaster University’s Christine Wilson is captivated by this turbulent galaxy that provides such a target-rich environment for watching stars form.

A little bit more about Arp 220 and apparently scientists have discovered amino acids there, you will have to excuse the talk of colliding galaxies.

Ingredients for life found ?

The most important thing about this system is not that is 2 colliding galaxies because this is what it is not, it is more like a growing system creating matter.

Quasi-Stellar Objects (QSO)                                 “we have found two pairs
of QSOs, one pair of objects at almost exactly the same angular distance from Arp 220 with redshifts that differ only by less than and a second pair at distances of 29 z p 0.009 .8 and 43.1,
respectively. As far as the first pair is concerned, the similarity of the redshifts and the fact that they lie along an axis through the nucleus of Arp 220 and are at roughly the same distance in opposite directions makes it highly unlikely that this is an accidental configuration.

The most likely explanation is that all four of these QSOs are physically associated with Arp 220 and have been ejected from it, so the redshifts are largely intrinsic in origin.

Click to access 015086.web.pdf

Milky way star filaments found, latest space news

New Herschel Images Reveal How Matter is Distributed Across Our Milky Way

May 29, 2015

Space

Image Reveals How Matter is Distributed Across Our Milky Way

This new image of filament G49 reveals how matter is distributed across our Milky Way galaxy.

New images of huge filamentary structures of gas and dust from the Herschel space observatory reveal how matter is distributed across our Milky Way galaxy. Long and flimsy threads emerge from a twisted mix of material, taking on complex shapes.

This image shows a filament called G49, which contains 80,000 suns’ worth of mass. This huge but slender structure of gas and dust extends about 280 light-years in length, while its diameter is only about 5 light-years across.

In this image, longer-wavelength light has been assigned visible colors. Light with wavelengths of 70 microns is blue; 160-micron light is green; and 350-micron light is red. Cooler gas and dust are seen in red and yellow, with temperatures as low as minus 421 degrees Fahrenheit (minus 252 degrees Celsius).

In the densest and coolest clumps, the seeds of new generations of stars are taking shape. A brighter clump of matter is visible at the left tip of the wispy thread.

This filament is about 18,000 light-years away. The image is oriented with northeast toward the left of the image and southwest toward the right.

Herschel is a European Space Agency mission, with science instruments provided by consortia of European institutes and with important participation by NASA. While the observatory stopped making science observations in April 2013, after running out of liquid coolant as expected, scientists continue to analyze its data. NASA’s Herschel Project Office is based at NASA’s Jet Propulsion Laboratory, Pasadena, California. JPL contributed mission-enabling technology for two of Herschel’s three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, supports the U.S. astronomical community. Caltech manages JPL for NASA.

Publication: Ke Wang, et al., “Large-scale filaments associated with Milky Way spiral arms,” MNRAS (July 11, 2015) 450 (4): 4043-4049; doi: 10.1093/mnras/stv735

PDF Copy of the Study: Large scale filaments associated with Milky Way spiral arms

Source: NASA