Pluto’s Atmosphere and plasma tail. NEW FINDINGS AMAZE

Well here is some data and analysis from New Horizons fly by.


Many  surprises have already been revealed in the data thus far released from NASA’s New Horizons mission. Today, physicist Eugene Bagashov discusses what we have learned thus far about Pluto’s atmosphere and the larger Plutonian environment.

New Horizons has discovered a region of cold, dense ionized gas tens of thousands of miles beyond Pluto — the planet’s atmosphere being stripped away by the solar wind and lost to space. Beginning an hour and half after closest approach, the Solar Wind Around Pluto (SWAP) instrument observed a cavity in the solar wind — the outflow of electrically charged particles from the Sun — between 48,000 miles (77,000 km) and 68,000 miles (109,000 km) downstream of Pluto. SWAP data revealed this cavity to be populated with nitrogen ions forming a “plasma tail” of undetermined structure and length extending behind the planet.

Also other interesting data on other planets atmospheres including our own earth.

Well worth a watch.

Thanks To Thunderbolts

Hans Alfven and his contributions to Modern Astronomy

If you Wikipedia Hans Alfven this is what comes up

“Hannes Olof Gösta Alfvén (Swedish: [alˈveːn]; 30 May 1908 – 2 April 1995) was a Swedish electrical engineer, plasma physicist and winner of the 1970 Nobel Prize in Physics for his work on magnetohydrodynamics (MHD). He described the class of MHD waves now known as Alfvén waves. He was originally trained as an electrical power engineer and later moved to research and teaching in the fields of plasma physics and electrical engineering. Alfvén made many contributions to plasma physics, including theories describing the behavior of aurorae, the Van Allen radiation belts, the effect of magnetic storms on the Earth’s magnetic field, the terrestrial magnetosphere, and the dynamics of plasmas in the Milky Way galaxy.”


If you dig a little deeper you will find

“Hannes Olof Gösta Alfvén (Swedish: [alˈveːn]; 30 May 1908 – 2 April 1995) was a Swedish electrical engineer, plasma physicist and winner of the 1970 Nobel Prize in Physics for his work on magnetohydrodynamics (MHD). He described the class of MHD waves now known as Alfvén waves. He was originally trained as an electrical power engineer and later moved to research and teaching in the fields of plasma physics and electrical engineering. Alfvén made many contributions to plasma physics, including theories describing the behavior of aurorae, the Van Allen radiation belts, the effect of magnetic storms on the Earth’s magnetic field, the terrestrial magnetosphere, and the dynamics of plasmas in the Milky Way galaxy.”


“Applications of Alfvén’s research in space science include:

Van Allen radiation belt theory
Reduction of the Earth’s magnetic field during magnetic storms
Magnetosphere (protective plasma covering the earth)
Formation of comet tails
Formation of the solar system
Dynamics of plasmas in the galaxy
Fundamental nature of the universe”

From here..

Hans Alfven in a Plasma universe

Hans Alfven did a lot of work with plasmas in the laboratory and recognised some of the same structures in space. This lead him to an understanding of workings within the universe that conflicted with mainstream Astronomy.

He was a critic against the Big Bang. ” The problem with the Big Bang was that astrophysicists tried to extrapolate the origin of the universe from mathematical theories developed on the blackboard. The Big Bang was a myth devised to explain creation, according to Alfvén”

“Alfvén’s work was disputed for many years by the senior scientist in space physics, the British-American geophysicist Sydney Chapman. Alfvén’s disagreements with Chapman stemmed in large part from trouble with the peer review system. Alfvén rarely benefited from the acceptance generally afforded senior scientists in scientific journals. He once submitted a paper on the theory of magnetic storms and auroras to the American journal Terrestrial Magnetism and Atmospheric Electricity, and his paper was rejected on the ground that it did not agree with the theoretical calculations of conventional physics of the time.”

Some quotes of his include

“I have always believed that astrophysics should be the extrapolation of laboratory physics, that we must begin from the present universe and work our way backward to progressively more remote and uncertain epochs.”

“We should remember that there was once a discipline called natural philosophy. Unfortunately, this discipline seems not to exist today. It has been renamed science, but science of today is in danger of losing much of the natural philosophy aspect.”

“Most people today still believe, perhaps unconsciously, in the heliocentric universe every newspaper in the land has a section on astrology, yet few have anything at all on astronomy.”

“We have to learn again that science without contact with experiments is an enterprise which is likely to go completely astray into imaginary conjecture.”
Hannes Alfven

His Honours include..

Alfvén was also honoured with the following:
1947 Member, Royal Swedish Academy of Sciences.
1947 Member, Royal Swedish Academy of Engineering Sciences (resigned 1980).
1958 Foreign Member, Academy of Sciences of the USSR (Akademia NAUK).
1962 American Academy of Arts and Sciences, Boston.
1965 Honorary DSc, University of Newcastle-upon-Tyne.
1966 Foreign Member, National Academy of Sciences, Washington DC.
1967 Gold Medal of the Royal Astronomical Society.
1970 Nobel Prize in Physics.
1971 Lomonosov Medal of the USSR Academy of Sciences.
1971 Gold Medal of the Franklin Institute.
1972 Foreign Member, Indian National Science Academy.
1974 Yugoslavian Academy of Science.
1977 Honorary DSc, University of Oxford.
1980 Foreign Member, Royal Society, London.
1985 Honorary PhD, Stockholm University.
1987 Bowie Gold Medal, American Geophysical Union.
1994 Dirac Medal, University of New South Wales and the Australian Institute of Physics.”



Arp 220 The Star Factory !!

The Star Factory

The galaxy Arp 220 is home to several giant star clusters—about 10 million solar masses—that are twice as massive as any comparable star cluster in the Milky Way Galaxy. McMaster University’s Christine Wilson is captivated by this turbulent galaxy that provides such a target-rich environment for watching stars form.

A little bit more about Arp 220 and apparently scientists have discovered amino acids there, you will have to excuse the talk of colliding galaxies.

Ingredients for life found ?

The most important thing about this system is not that is 2 colliding galaxies because this is what it is not, it is more like a growing system creating matter.

Quasi-Stellar Objects (QSO)                                 “we have found two pairs
of QSOs, one pair of objects at almost exactly the same angular distance from Arp 220 with redshifts that differ only by less than and a second pair at distances of 29 z p 0.009 .8 and 43.1,
respectively. As far as the first pair is concerned, the similarity of the redshifts and the fact that they lie along an axis through the nucleus of Arp 220 and are at roughly the same distance in opposite directions makes it highly unlikely that this is an accidental configuration.

The most likely explanation is that all four of these QSOs are physically associated with Arp 220 and have been ejected from it, so the redshifts are largely intrinsic in origin.

Quasars and modern Astronomy

Quasars , what the heck are they ?

Quasistellar objects, or quasars, were defined originally as star-like objects of large redshift. Today,
quasars are considered to be the most luminous members of the general class of objects called active galactic nuclei, or AGNs. Quasars are the brightest objects in the universe

We know about quasars because of observations from telescopes.

They are highly luminous and active, from which grow into active galaxies.

There is a lot of activity going on these quasars, matter formation, star creation.


We google Quasars and get from Wiki

“Quasars or quasi-stellar radio sources are the most energetic of a class of objects called active galactic nuclei (AGN). Quasars are extremely luminous and were first identified as being high redshift sources of electromagnetic energy, including radio waves and visible light, that appeared to be similar to stars, rather than extended sources similar to galaxies. Their spectra contain very broad emission lines, unlike any known from stars, hence the name “quasi-stellar.” Their luminosity can be 100 times greater than that of the Milky Way.”

Which is basically telling us, these things pump out energy !!

Then it all turns pear shaped with the media and Astronomy, they go on to say, as if on the drive for research dollars. “Most quasars were formed approximately 12 billion years ago caused by collisions of galaxies and their central black holes merging to form a supermassive black hole.”

A classic example of this is microquasar IGR J17091-3624. Once again if we look the IGR number up we get, from Wiki a Black hole and you may find in a  number of science article they refer to this system as proof of a black hole !

Is there any rational discussion about this system going on ?

Well yes but I suppose it depends how far you want to venture down the rabbit hole. Well it didn’t take me long and I found.

“Microquasar IGR J17091-3624 exhibits faint, quasi-periodical outbursts of the period between 5 and 70 seconds and regular amplitudes, frequently referred to as the
’heartbeat state’. ”

From here

Quasars what are they ?

The Astrophysical Journal, 553:L11–L13, 2001 May 20


H. C. Arp
Max-Planck-Institut fu¨r Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching, Germany
E. M. Burbidge
University of California San Diego Center for Astrophysics and Space Sciences, La Jolla, CA 92093-0424
Y. Chu and X. Zhu
Center for Astrophysics, University of Science and Technology of China, Hefei, Anhui 230026, China
Received 2001 February 6; accepted 2001 April 11; published 2001 May 8

 All of the evidence suggests that these QSOs have been ejected from z p 1.25
Arp 220 and have large intrinsic redshifts.

Well they are not black holes.

Halton Arp one of the fathers of modern cosmology !! Red Shift explained

No black holes.

Real empirical science.

Starts with Cygnus A.

Halton Arp himself talking about his discoveries.

Red shift explained with ejection and matter creation from Active Galactic Nuclei.

Halton Arps Atlas of peculiar galaxies

“The distribution on the sky of clusters of galaxies started to be cataloged about 40 years ago by George Abell and collaborators. The cores of these clusters were predominantly old stellar population E galaxies which were believed to be mostly gas free and inactive. With the advent of X-ray surveys, however, it became evident that many clusters of galaxies were strong X-ray emitters. This evidence for non-equilibrium behavior was not easily explained. In these active properties, however, the clusters joined AGN’s and quasars as the three principal kinds of extragalactic X-ray sources. Evidence then developed that quasars, and now some galaxy clusters were physically associated with much lower redshift galaxies. Surprisingly, the cluster redshifts were sharply peaked at the preferred quasar redshifts of z = .061, .30 etc. (This evidence has been discussed principally in Arp 1997; 1998a; Arp and Russell 2001).”

Our STAR , The Sun

Well it gives us life from the energy it throws our way, photosynthesis for plants and vitamin D for us.


It has been worshiped throughout the ages.

What do we really know about it ?

A quick google search will tell you hydrogen and helium and a light sprinkling of metals.


Anything that talks about the center of the sun is theory. So forgot about the millions of degrees at the center of the sun, that is speculation. As there has been to date no concrete proof of this.

Let us instead talk about what we do know for a fact about our star.

The surface of the Sun that we typically see from Earth is the photosphere which is a brightly radiating layer of plasma only about 500 km thick. It is analogous to the ‘anode glow’ region of a laboratory gas discharge experiment

The temperature of the surface of the sun fluctuates according to the activity on the surface, but an average temperature of 5,500 degrees C has been obtained for the photosphere. This is not in the  millions or even hundreds of thousands. No you heard me 5500 C. Temperatures this hot have been made on earth.

The chromosphere is the innermost atmospheric layer. It is just above the photosphere. Here the temperature begins to rise again, to about 20000 degrees C

The Corona of the sun is hotter still, The corona can get about 2 million degrees C.

“The sun’s photosphere is often mistakenly referred to as the surface of the sun. In reality however, the sun’s photosphere is only a “liquid-like” plasma layer made of neon that covers the actual surface of the sun. That visible layer we see with our eyes is composed of penumbral filaments that are several hundred kilometers deep. This visible neon plasma layer that we call the photosphere, and a thicker, more dense atmospheric layer composed of silicon plasma, entirely covers the actual rocky, calcium ferrite surface layer of the sun. The visible photosphere covers the actual surface of the sun, much as the earth’s oceans cover most of the surface of the earth. In this case the sun’s photosphere is very bright and we cannot see the darker, more rigid surface features below the photosphere without the aid of satellite technology.

Nasa's SOHO Satellite imagery of the transition layer beneath the photosphere
Nasa’s SOHO Satellite imagery of the transition layer beneath the photosphere

The composition and mechanical inner workings of the sun beneath the visible photosphere have remained an enigma for thousands of years. There are a whole host of unexplained phenomena related to the sun’s activities that still baffle gas model theorists to this day because they fail to recognize the existence of an iron alloy transitional layer that rests beneath the visible photosphere. Fortunately a host of new satellites and the field of heliosiesmology are starting to shed new light on this mysterious “stratification subsurface” layer of the sun that is located about 4800km beneath the visible photosphere. In addition, recent studies of solar wind suggest that solar wind also originates on the same transition layer under the photosphere as do the electrically charged coronal loops. NASA’s SOHO satellite and the Trace satellite program have both imaged this transition layer of the sun that sits beneath the photosphere. These 21st century satellites and technologies now enable us to peer behind the outer plasma layers of the chromosphere and photosphere and allow us to study the rocky, calcium ferrite transitional layer with incredible precision.

The running difference imaging technique used by both NASA and Lockheed Martin have revealed to us for the first time that the sun is not simply a ball of hydrogen gas in space; it has a hard and rigid ferrite surface below the visible photosphere


The surface can also be seen in raw satellite images. This close up standard image of the surface layer is provided by Trace using its 171 angstrom filter. This close up image shows remarkable surface detail and also shows a close up view of the solar wind created from the electrical arcs. These arcs create streamers as they travel through the sun’s outer atmosphere of mass separated plasmas.
T171_20030818_090231The same remarkable surface detail is still clearly visible in the transitional region two and half minutes later although the lighting has changed slightly due to changes in the electrical arcs coming from the surface. Unlike in the running difference images, in “standard” close up images we can also see the base of the electrical arcs as they rise off the surface into the silicon plasma to form the familiar coronal loop patterns seen in the upper atmosphere.”


Electricity clearly has a significant role.

In thiIn this day and age there is no longer any doubt that electrical effects in plasmas play an important role in the phenomena we observe on the Sun.s day and age there is no longer any doubt that electrical effects in plasmas play an important role in the phenomena we observe on the Sun.

In this day and age there is no longer any doubt that electrical effects in plasmas play an important role in the phenomena we observe on the Sun.

Most of the space within our galaxy is occupied by plasma (rarefied ionized gas) containing electrons (negative charges) and ionized atoms (positive charges). Every charged particle in the plasma has an electric potential energy (voltage) just as every pebble on a mountain has a mechanical potential energy with respect to sea level.

The Sun is at the center of a plasma cell, called the heliosphere, that stretches far out – several times the radius of Pluto. As of 9/9/2012 the radius of this plasma cell has been measured to be greater than 18 billion km or 122 times the distance from the Sun to Earth. These are facts not hypotheses.

The Sun is at a more positive electrical potential (voltage) than is the space plasma surrounding it – probably in the order of several billion volts.
Positive ions leave the Sun and electrons enter the Sun. Both of these flows add to form a net positive current flowing through the Sun (entering at the poles and leaving radially at lower latitudes). This constitutes a plasma discharge analogous in every way (except size) to those that have been observed in electrical plasma laboratories for decades. Because of the Sun’s positive charge (voltage), it acts as the anode in a plasma discharge. As such, it exhibits many of the phenomena observed in earthbound plasma laboratory experiments.

The Solar Wind

Positive ions stream outward from the Sun’s surface and accelerate away, through the corona, for as far as we have been able to measure. It is thought that these particles eventually make up a portion of the cosmic ray flux that permeates the cosmos. The ‘wind’ varies with time and has even been observed to stop completely for a period of a day or two.

A couple of questions I found that were interesting

Dr. David Hathaway, a solar scientist at NASA’s Marshall Space Flight Center,

what determines the frequency of solar activity?

David: The sunspot cycle and solar magnetism.

What makes the out layers of the sun so unstable as to eject flares and cause the coronal loops?

David: It’s all magnetism. The magnetic fields are produced inside the sun by the motions of ionized gases. Those magnetic fields rise thru the surface and can become twisted which results in explosions like flares and coronal mass ejections.


Comets are they really snowballs ? The evidence says no..

Nowhere in this article is the comet referred to as ice, it has been said now that this comet is a space rock.

Many thanks to the Thunderbolts crew

Our electric star is connected to us through plasma

Thanks to the thunderbolts crew for their great work.


This is an awesome accomplishment. Cleo Loi, a 23-year-old undergrad student, “has discovered that giant, invisible, moving plasma tubes fill the skies above Earth.”

First she was met with disbelief. “Ms Loi told that her research was initially dismissed as being based on imperfections in the telescope images. ‘They had never seen this type of thing before. No one had looked at the data in this way before,’ she said. ‘A lot of the people were pretty convinced is was some problem with the imaging, that it was nothing to get excited about.'”

The implications could be far-reaching. “Ms Loi said the drifting plasma tubes could distort astronomical data, especially satellite-based navigation systems. It may also mean we need to re-evaluate our thinking about how galaxies, stars and clouds of gas behave and what they look like.”

Cleo Loi is a student of the ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) and the School of Physics at the University of Sydney. She has been working on this research as a part of her undergraduate thesis and is the lead author of this award winning research paper which was published in the journal Geophysical Research Letters. Cleo Loi et al has invented a three dimensional way to view the Earth’s magnetosphere.

Loi said: “For over 60 years, scientists believed these structures existed but by imaging them for the first time, we’ve provided visual evidence that they are really there.”

Basically, Sun is constantly emitting charged particles or ionized particles towards Earth. Scientists believe Earth is surrounded by complex magnetic field known as magnetosphere (that protects life on Earth from any damage). When these ionized particles approach Earth their path gets diverted due to which some of the particles may get deflected while some may be funneled towards the pole of Earth resulting in a spectacular array of light, due to the interaction between the magnetic fields and the eruption of gas from these charged particles, thus leading to a display known as ‘aurora’.

Earth’s protective magnetosphere further comprises of ionosphere and plasmasphere. The innermost being ionosphere and the layer above that is plasmasphere. Though not much is known about these complex structures and the research work is still under progress; however scientists believe that these are embedded with a plasma structures which are in the form of tubes and various other strange shapes.

The ionosphere does interfere with satellite navigation systems as well as it affects the images that are received by the radio telescopes hence a detailed study of this layer is a must.

By using the Murchinson Widefield Array (MWA), a radio telescope in the Western Australian desert, Loi probed these regions and ultimately landed on discovering the visual evidences of the 60 year old theory of tubular plasma structures drifting around the Earth.

Loi said: “The discovery of the structures is important because they cause unwanted signal distortions that could, as one example, affect our civilian and military satellite-based navigation systems. So we need to understand them.”

A forerunner of Square Kilometer Array (SKA), MWA consists of 128 antennae that are spread over a huge area of three kilometers which is almost 2 miles.

In her research study, Loi attempted to achieve a vision similar to binocular by splitting the western ends of the array from the eastern ends thus making it possible to get a three dimensional view of the magnetosphere.

Usually when the MWA is used for astronomical work, with a three kilometer baseline it cannot give the required parallax effect that is essential to get the in-depth view. However, during this research the situation was entirely different as the astronomers were looking close to Earth.

During her study, Loi was able to map a series of high and low density plasma tubes that connected the ionosphere and plasmasphere,  in addition these tubes were running parallel to the magnetic field. Says Loi: “We measured their position to be about 600 kilometres [373 miles] above the ground, in the upper ionosphere, and they appear to be continuing upwards into the plasmasphere. This is around where the neutral atmosphere ends, and we are transitioning to the plasma of outer space.”

Further it was seen that with time the tubes are moving slowly hence a changing interference effect has been experienced by the telescopes.

While speaking to IFLScience, Loi said that earlier researchers have been successful in limited probing into the ionosphere using Very Large Array, which is some other type of radio telescope; however applying parallax and getting a visual evidence is something totally new and has never been previously applied to the problem.

Loi said: “People theorized something like this from observations of a type of very low frequency electromagnetic wave. We can detect lightning from another hemisphere and people concluded there must be plasma tubes guiding the signal. It’s a very indirect conclusion, and no one had much idea what these tubes were like.”

For her breakthrough research, Cleo Loi has been awarded the 2015 Bok Prize of the Astronomical Society of Australia.

Loi has mentioned that it was amazing to visualize the giant plasma tubes using MWA’s enormous 30° field. Loi further envisages that the SKA is used in future to study the ionosphere and hopes that the publicity of her research would definitely be successful in bringing about this major change.


News story regarding this discovery of Plasma tubes.

Milky way star filaments found, latest space news

New Herschel Images Reveal How Matter is Distributed Across Our Milky Way

May 29, 2015


Image Reveals How Matter is Distributed Across Our Milky Way

This new image of filament G49 reveals how matter is distributed across our Milky Way galaxy.

New images of huge filamentary structures of gas and dust from the Herschel space observatory reveal how matter is distributed across our Milky Way galaxy. Long and flimsy threads emerge from a twisted mix of material, taking on complex shapes.

This image shows a filament called G49, which contains 80,000 suns’ worth of mass. This huge but slender structure of gas and dust extends about 280 light-years in length, while its diameter is only about 5 light-years across.

In this image, longer-wavelength light has been assigned visible colors. Light with wavelengths of 70 microns is blue; 160-micron light is green; and 350-micron light is red. Cooler gas and dust are seen in red and yellow, with temperatures as low as minus 421 degrees Fahrenheit (minus 252 degrees Celsius).

In the densest and coolest clumps, the seeds of new generations of stars are taking shape. A brighter clump of matter is visible at the left tip of the wispy thread.

This filament is about 18,000 light-years away. The image is oriented with northeast toward the left of the image and southwest toward the right.

Herschel is a European Space Agency mission, with science instruments provided by consortia of European institutes and with important participation by NASA. While the observatory stopped making science observations in April 2013, after running out of liquid coolant as expected, scientists continue to analyze its data. NASA’s Herschel Project Office is based at NASA’s Jet Propulsion Laboratory, Pasadena, California. JPL contributed mission-enabling technology for two of Herschel’s three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena, supports the U.S. astronomical community. Caltech manages JPL for NASA.

Publication: Ke Wang, et al., “Large-scale filaments associated with Milky Way spiral arms,” MNRAS (July 11, 2015) 450 (4): 4043-4049; doi: 10.1093/mnras/stv735

PDF Copy of the Study: Large scale filaments associated with Milky Way spiral arms

Source: NASA

Seeing Red by Halton Arp

seeingred A fantastic read for anyone interested in cosmology. A must

His work with quasars and red shift, is quite astounding. The clearly visible filaments attached between a quasar and it’s parent galaxy. Such a relief to see he disputes the big bang but sounds like it was quite taxing on his career, hence this book and the truths he has in them backed up with real evidence.