Our STAR , The Sun

Well it gives us life from the energy it throws our way, photosynthesis for plants and vitamin D for us.


It has been worshiped throughout the ages.

What do we really know about it ?

A quick google search will tell you hydrogen and helium and a light sprinkling of metals.


Anything that talks about the center of the sun is theory. So forgot about the millions of degrees at the center of the sun, that is speculation. As there has been to date no concrete proof of this.

Let us instead talk about what we do know for a fact about our star.

The surface of the Sun that we typically see from Earth is the photosphere which is a brightly radiating layer of plasma only about 500 km thick. It is analogous to the ‘anode glow’ region of a laboratory gas discharge experiment

The temperature of the surface of the sun fluctuates according to the activity on the surface, but an average temperature of 5,500 degrees C has been obtained for the photosphere. This is not in the  millions or even hundreds of thousands. No you heard me 5500 C. Temperatures this hot have been made on earth.

The chromosphere is the innermost atmospheric layer. It is just above the photosphere. Here the temperature begins to rise again, to about 20000 degrees C

The Corona of the sun is hotter still, The corona can get about 2 million degrees C.

“The sun’s photosphere is often mistakenly referred to as the surface of the sun. In reality however, the sun’s photosphere is only a “liquid-like” plasma layer made of neon that covers the actual surface of the sun. That visible layer we see with our eyes is composed of penumbral filaments that are several hundred kilometers deep. This visible neon plasma layer that we call the photosphere, and a thicker, more dense atmospheric layer composed of silicon plasma, entirely covers the actual rocky, calcium ferrite surface layer of the sun. The visible photosphere covers the actual surface of the sun, much as the earth’s oceans cover most of the surface of the earth. In this case the sun’s photosphere is very bright and we cannot see the darker, more rigid surface features below the photosphere without the aid of satellite technology.

Nasa's SOHO Satellite imagery of the transition layer beneath the photosphere
Nasa’s SOHO Satellite imagery of the transition layer beneath the photosphere

The composition and mechanical inner workings of the sun beneath the visible photosphere have remained an enigma for thousands of years. There are a whole host of unexplained phenomena related to the sun’s activities that still baffle gas model theorists to this day because they fail to recognize the existence of an iron alloy transitional layer that rests beneath the visible photosphere. Fortunately a host of new satellites and the field of heliosiesmology are starting to shed new light on this mysterious “stratification subsurface” layer of the sun that is located about 4800km beneath the visible photosphere. In addition, recent studies of solar wind suggest that solar wind also originates on the same transition layer under the photosphere as do the electrically charged coronal loops. NASA’s SOHO satellite and the Trace satellite program have both imaged this transition layer of the sun that sits beneath the photosphere. These 21st century satellites and technologies now enable us to peer behind the outer plasma layers of the chromosphere and photosphere and allow us to study the rocky, calcium ferrite transitional layer with incredible precision.


The running difference imaging technique used by both NASA and Lockheed Martin have revealed to us for the first time that the sun is not simply a ball of hydrogen gas in space; it has a hard and rigid ferrite surface below the visible photosphere


The surface can also be seen in raw satellite images. This close up standard image of the surface layer is provided by Trace using its 171 angstrom filter. This close up image shows remarkable surface detail and also shows a close up view of the solar wind created from the electrical arcs. These arcs create streamers as they travel through the sun’s outer atmosphere of mass separated plasmas.
T171_20030818_090231The same remarkable surface detail is still clearly visible in the transitional region two and half minutes later although the lighting has changed slightly due to changes in the electrical arcs coming from the surface. Unlike in the running difference images, in “standard” close up images we can also see the base of the electrical arcs as they rise off the surface into the silicon plasma to form the familiar coronal loop patterns seen in the upper atmosphere.”



Electricity clearly has a significant role.

In thiIn this day and age there is no longer any doubt that electrical effects in plasmas play an important role in the phenomena we observe on the Sun.s day and age there is no longer any doubt that electrical effects in plasmas play an important role in the phenomena we observe on the Sun.

In this day and age there is no longer any doubt that electrical effects in plasmas play an important role in the phenomena we observe on the Sun.

Most of the space within our galaxy is occupied by plasma (rarefied ionized gas) containing electrons (negative charges) and ionized atoms (positive charges). Every charged particle in the plasma has an electric potential energy (voltage) just as every pebble on a mountain has a mechanical potential energy with respect to sea level.

The Sun is at the center of a plasma cell, called the heliosphere, that stretches far out – several times the radius of Pluto. As of 9/9/2012 the radius of this plasma cell has been measured to be greater than 18 billion km or 122 times the distance from the Sun to Earth. These are facts not hypotheses.

The Sun is at a more positive electrical potential (voltage) than is the space plasma surrounding it – probably in the order of several billion volts.
Positive ions leave the Sun and electrons enter the Sun. Both of these flows add to form a net positive current flowing through the Sun (entering at the poles and leaving radially at lower latitudes). This constitutes a plasma discharge analogous in every way (except size) to those that have been observed in electrical plasma laboratories for decades. Because of the Sun’s positive charge (voltage), it acts as the anode in a plasma discharge. As such, it exhibits many of the phenomena observed in earthbound plasma laboratory experiments.

The Solar Wind

Positive ions stream outward from the Sun’s surface and accelerate away, through the corona, for as far as we have been able to measure. It is thought that these particles eventually make up a portion of the cosmic ray flux that permeates the cosmos. The ‘wind’ varies with time and has even been observed to stop completely for a period of a day or two.


A couple of questions I found that were interesting

Dr. David Hathaway, a solar scientist at NASA’s Marshall Space Flight Center,

what determines the frequency of solar activity?

David: The sunspot cycle and solar magnetism.

What makes the out layers of the sun so unstable as to eject flares and cause the coronal loops?

David: It’s all magnetism. The magnetic fields are produced inside the sun by the motions of ionized gases. Those magnetic fields rise thru the surface and can become twisted which results in explosions like flares and coronal mass ejections.







2 thoughts on “Our STAR , The Sun

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s